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1. INTRODUCTION

The performance of certain nonlinear stochastic systems is
deemed acceptable if, during a specified time interval, the systems
have sufficiently low probabilities of escape from a preferred
region of phase space. These probabilities can be reduced by
using an appropriate control system.

We propose a Melnikov-based approach to achieving an
efficient open-loop control. The approach is applicable to the
wide class of multistable systems that have dissipation- and
excitation-free counterparts possessing homoclinic or heteroclinic
orbits. That class includes, e.g., the rf Josephson junction and the
Duffing equation, and higher- and infinitely-dimensional systems.

We review the theoretical basis of our approach, use¢ numerical
simulations to test its effectiveness for the paradigmatic case of
the stochastically excited Duffing equation, and discuss our
results.

2. MELNIKOV PROCESSES AND EXITS FROM A WELL

The Melnikov approach is a technique providing necessary
conditions for the occurrence of chaos in a class of dynamical
systems. Until recently it was considered to be applicable only to
deterministic systems. Following an extension from the case of
periodic to the case of quasiperiodic excitation [1], Melnikov
theory was further extended to the case of additive or
multiplicative excitation by Gaussian, white, shot or dichotomous
processes [2], {3].

Necessary conditions for the occurrence of chaos indicate the
range of system parameters for which exits from preferred
regions of phase space cannot occur. The Melnikov approach can
thus help to study the exit problem for the wide class of systems.

For definiteness we consider the equation

Z=-V@+ e[GO - )] (1)

where B, are constants, 8>0, and V(z) is a potential function.
‘We assume that: (i) the unperturbed system (e =0) is integrable;
(i) V(z) has the shape of a multiple well so that the unperturbed
system has a center at the bottom of each well and a saddle point
at the top of the barrier between two adjacent wells. The stabie
and unstable manifolds emanating from the saddle point of the
unperturbed system then coincide. Finally, we assume G(t) is a

random process. As a typical example we consider the Duffing
equation with potential V(z) = z*/4-z%/2, homoclinic orbits with

coordinates z,(t)=(2)"Zsech(t), 2,(t)=(2)! Zsech(t)tanh(t), and a
modulus of the Fourier transform of the function h(t)= 2,(-t)

S(w)=(2)rwsech(nw/2). 2
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We also note for later use that c = | zsz(r)dr = 4f3.
-0

Associated with Eq. 1 is a Melnikov process with the expression
@
M(t) = -Bc + [ h(r)G(t-r)dr. ®
0
Any realization of the Melnikov process represents the distanee
between the stable and unstable manifolds of Eq. 1 (ew);
corresponding to a realization of the random process G(t).

For any given system, increasing 7. by using an open-loop
control approach can be achieved by adding to the excitation
€-yG(t) a control force €v,G(t), where -y has the same sign as
~. A trivial choice of the open-loop control force would be
G(t)=-G(t). However, even if such a trivial open-loop control
could be achieved, it would clearly inefficient. We propose to use
the Melnikov apprcach to obtain a more efficient open-loop
control force.

The mean zero upcrossing time, 74, of the Melnikov procest
is a measure of the mean time of exit from a well, 7, and &
determined by the spectral density of the Melnikov process [4)
From Eq. 3 it follows that the spectral density of the Melniko:
process for the uncontrolled system is 21r\IIM(w)=52(w)[21r\I!(w)}
where S(w) is the modulus of the Fourier transform of h(t), anc
2m¥(w) is the spectral density of the random process G(t).

For illustration purposes we consider the Duffing equation, for
which S(w) is given by Eq. 2, and the process G(t) with

( 0.03990¢n(w)+0.12829 0.04g0 0+
219 (w)=4 0.05755¢n(w)+0.14493 04502 1
1-0.38301[en(w)]2+1.06192¢n()-0.02941 1250513+

To a first approximation this spectrum is representative of 10%-
frequency fluctuations of the horizontal wind speed.

A graphic representation of Sz(w) and 2r¥(w)S?(w) shows tha:
owing to the shape of S%(w), which plays the role of &
admittance function, only part of the frequency compone:nlsfx
the excitation G(t) contribute significantly to the spectral depsh?
of the uncontrolied system’s Melnikov process. We therefort
propose the following approach. Instead of G(t)s-G(t), it wouk
be more efficient to apply a control force obtained from !
function -G(t) by filtering out from this function those frequen
components that do not contribute significantly to the spet
density ¥ y(w). The advantage of the proposed approach over X
trivial approach G(t)=s-G(t) is that, in general, it would redv®
significantly the power needed for the system’s control, ¥t
resulting in almost the same reduction of the ordinates (and!
mean zero upcrossing rate) of the controlled system’s Me



process. Given the dependence of the system’s mean exit time on
the Melnikov process mean zero upcrossing rate, the proposed
approach, in spite of its reduced power needs, can be expected
to result in almost the same improvement in the controlled
system’s behavior as the more onerous trivial approach.

The procedure just described -- like its trivial counterpart —- is
unfeasible owing to limitations of practical control system. These
limitations entail non-zero time lags between sensing of a signal
and actuator response, as well as unavoidabie inefficiencies of
practical filters. We present next results of numerical simulations
aimed at illustrating the potential of the proposed approach
modified to account for non-zero time lags. Work on the role of
other practical control system limitations is in progress.

3. SIMULATIONS AND DISCUSSION OF RESULTS

We considered the Duffing equation with ¢=0.1 and #=0.45 and
examined the case where G(t) has the spectrum given earlier. We
estimated by numerical simulation the mean exit rate for the
uncontrolled system. We then estimated the mean exit rates for
the system to which we applied control forces obtained by passing
the function -€y.G(1-7 ;) through an ideal filter that suppresses
all the Fourier components for 0sw<w, and w>w,, and leaves
the other components unchanged. We assumed (1) 7,=0.1 and
(2) 7,=0.5. By inspecting the spectrum of the Melnikov process
we chose w; =04, wy=2.4. Calculations showed that the final
results being sought were affected insignificantly even for w; as
small as zero and w, as large as the largest energy-containing
frequency of the excitation spectrum. The resuits of the
simulations are shown in Fig. 1, in which o=e¢-y.

For any given time lag r, the relative effectiveness of the
control with a Melnikov-based ideal filter is defined by the ratio
v/, where u is the variance of the control force obtained by
passing the excitation through the filter, and v is the variance of
the unfiltered excitation. The variances are measures of average
power. Simple calculations yield »/u=37.0 for our case.

4. CONCLUSIONS

An open-loop approach to the control of a wide class of
nonlinear stochastic systems was proposed with a view to
achieving an efficient reduction of the mean exit rate from a
potential well. It was shown that the Melnikov relative scale
factors contain information that can be used for the design of
filters suitable for that purpose. The degree to which an efficient
Melnikov-based control can be achieved in practice depends upon
the system’s Melnikov scale factors, the spectrum of the
excitation, and the quality of the filter design. Numerical
simulations suggest that our approach can be effective in practice.
However, the intent of this paper is merely to draw the attention
of control specialists to the novel approach we propose, in the
belief that - whether used singly or as a component in a more
complex control strategy -- it can become a useful addition to the
current body of nonlinear control theory and practice.
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Fig. 1. (a) Mean exit rate n,, for uncontrolled system with noise
ozey; (b) ratio of controlled system’s exit rate ng to n,, for
time lag r,=0.1 (lower curve) and 7,=0.5 (upper curve).



